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Abstract—This work presents an open-source bitstream gener-
ation tool for Torc. Bitstream generation has traditionally been
the single part of the FPGA design flow that could not be openly
reproduced, but our novel approach enables this without reverse-
engineering or violating End-User License Agreement terms.

We begin by creating a library of “micro-bitstreams” which
constitute a collection of primitives at a granularity of our
choosing. These primitives can then be combined to create larger
designs, or portions thereof, with simple merging operations.

Our effort is motivated by a desire to resume earlier work
on embedded bitstream generation and autonomous hardware.
This is not feasible with Xilinx bitgen because there is no
reasonable way to run an x86 binary with complex library and
data dependencies on most embedded systems.

Initial support is limited to the Virtex5, but we intend to extend
this to other Xilinx architectures. We are able to support nearly
all routing resources in the device, as well as the most common
logic resources.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are pro-
grammable hardware devices that perform no function until
configured by a configuration bitstream. Modern SRAM-based
FPGAs support active, partial, and repeated configuration,
meaning that devices can be reconfigured as often as necessary,
in whole or in part, while the device continues to operate.
These properties provide a wide range of benefits, but some
of the benefits are unintentionally limited by the available
bitstream generation tools.

FPGA manufacturers are careful to protect bitstream details
because their customers are concerned about the possibility of
designs being extracted and reverse-engineered, and because
the manufacturers would suffer severe financial loss if some-
one were to produce bitstream-equivalent devices at lower
cost. Manufacturers provide bitstream generation tools that
work well for the majority of their customers, but sometimes
fall short of what researchers need. Nonetheless, attempts
to understand or reverse-engineer bitstreams are consistently
discouraged by the manufacturers [1].

But many uses of bitstream information are legitimate and
benign. Our intent is not to extract anything from bitstreams
or vendor software, but simply to refactor the bitstream
generation capability for special purposes, and we are open-
sourcing this capability in that vein. Two cases of particular
interest from prior work [2] are rapid bitstream modification
and embedded bitstream generation:

Rapid bitstream modifications for customization, dynamic
tuning, interactive debugging, or autonomous control require
numerous small changes to designs. We wish to incrementally
describe these changes in XDL physical netlists, and rapidly
turn them into partial bitstreams. In traditional flows, each de-
sign change requires rebuilding the design, placing and routing
it, and re-generating the bitstream. And even for very small
partial bitstreams, Xilinx bitgen generates a full bitstream and
compares it to some reference bitstream before it can generate
the partial bitstream. Our micro-bitstream assembly approach
instead allows an application to convert small XDL changes
directly into partial bitstreams that can be written to files or
to a device ICAP port for active self-reconfiguration.

Special capability is similarly required for embedded bit-
stream generation. Many reconfigurable applications use pre-
generated bitstreams, but some applications need to dynami-
cally generate bitstreams at runtime. A tool like bitgen, as an
x86 executable with significant data and OS dependencies, is
not suitable for use in most embedded systems. The special
constraints of embedded systems require a bitstream generator
with a modest memory footprint that can be compiled for
available hard- or soft-processors. Pairing micro-bitstream as-
sembly with Torc will allow us to embed bitstream generation
within autonomous and other special purpose systems.

This work takes a novel approach to basic bitstream gener-
ation that does not require reverse-engineering. The approach
facilitates rapid generation of bitstreams for small designs, and
is suitable for use in embedded systems.

Section II provides background and related work. We
present our hypothesis and approach in sections III and IV.
We discuss the details of library creation in Section V and
of bitstream generation in Section VI. And finally, we present
results in Section VII, before concluding in Section VIII.

II. BACKGROUND

We begin by discussing prior work and related work, with
particular emphasis on the tools that we build upon. We then
include an overview of bitstream structure to provide context
for the reader.

A. Prior Work

Independent bitstream generation for Xilinx devices is not
without precedent. JBits [3] was the first known tool able to



modify existing bitstreams for XC4000 and later for Virtex
and Virtex2, but it was unable to generate complete bitstreams
from scratch. A completely rewritten update extended that
support to include VirtexE, Virtex2P, Spartan2E, and Spartan3,
and was able to generate complete bitstreams with the same
fidelity as bitgen. That extended capability was never officially
acknowledged or released, and was simply described as a
“Device API” [2], but it was successfully embedded into a real
hardware system and used for the purpose of autonomously
modifying itself while running.

A number of research groups have developed bitstream
generation capabilities for internal purposes, but have not
drawn attention to those capabilities. This is true of Wires-
on-Demand [4], qFlow [5], and ERDB [6]. Others have
simply manipulated bitstreams at the frame granularity without
providing any generation capability of their own [7].

Work by Silva and Ferreira [8] sounds conceptually sim-
ilar to ours, in that it assembles bitstreams out of discrete
components, but it generally does so at a very different gran-
ularity and is not suitable for arbitrary bitstream generation.
Silva and Ferreira are specifically interested in fast embedded
bitstream generation for directed acyclic graphs, and their
work consequently carries a number of performance-related
restrictions. The bitstreams are built from components like
“adders, comparators, and multipliers” that may not overlap
and are placed in a reserved dynamic region. These compo-
nents must be placed in vertical stripes, and connectivity is
only permitted between adjacent stripes, based upon a defined
subset of routing resources. In practice the approach is closer
to late-binding of components [9] than it is to the generation
of arbitrary bitstreams that we need.

The most concerted and successful published bitstream
reverse-engineering effort came from a tool named debit
by Note and Rannaud [10]. Debit provided substantial ca-
pabilities for Virtex2, Virtex4, Virtex5, and Spartan3, with
anticipated extension to Altera architectures, but seems to
have attracted too much unfavorable attention. The host site
http://www.ulogic.org/trac was permanently removed from ser-
vice in summer of 2010.

B. Related Work

Our work relies heavily upon Torc [11] for XDL support,
bitstream frame and packet processing, and device exploration.
Torc is an open-source C++ infrastructure and toolset for
reconfigurable computing, intended for custom research ap-
plications, CAD tool development, architecture exploration,
or applications that need to work with real device data. Torc
can be used for research in synthesis, mapping, placing, and
routing, and for productivity enhancements, power optimiza-
tion, radiation tolerance, security, and other domains that are
sometimes overlooked by the commercial industry.

Torc includes four main APIs. The Generic Netlist API
provides an object model and read/write capabilities for un-
mapped EDIF netlists. The Physical Netlist API provides an
object model and read/write capabilities for mapped XDL
netlists. The Device Architecture API provides exhaustive
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Fig. 1. XC5VLX30 configuration space drawn to scale. The bitstream
consists of block types 0 and 1, where 1 is only used for BRAM content.
The device is divided into top and bottom halves, each with multiple rows.
Clock regions are bounded by rows and by the center of the device. Column
numbers are displayed along the top. IOB columns are blue, DSP columns are
red, BRAM columns are green, and CLB columns are white. A clock word
runs through the center of every row. The highlighted area at coordinates
<block 0, bottom half, row 0, column 2> consists of 36 frames.

logic and wiring descriptions for numerous Xilinx architec-
tures. And the Bitstream Frames API provides read/write
capabilities for configuration bitstreams down to the frame
granularity. No information is provided about bits inside
frames, except as documented in the various Xilinx configu-
ration guides. Torc also includes tools for routing, placement,
and other CAD functions.

C. Bitstream Structure

Modern FPGAs are arranged as heterogeneous two-
dimensional arrays described by a tile map. There is a corre-
spondence between the tile map and the configuration space of
the device as it exists in the bitstream, but that correspondence
is generally complex. In Xilinx architectures beginning with
Virtex4, a device is divided into top and bottom “halves”
that are not always of the same height—see Figure 1. Those
halves are further divided into rows of equal height that contain
two horizontally adjacent clock regions. The rows are further
subdivided into columns and then into frames—the smallest
addressable part of the FPGA configuration. Together with
one additional coordinate called a block type, the half, row,
column, and frame define a unique frame address.

The size of the frames depends upon the device or ar-
chitecture that they belong to, but remains constant across a
particular device.1 Every configuration frame in the device also
has an associated frame address that determines its location.

1Spartan-6 I/O frames are a known exception to this rule.

http://web.archive.org/web/20100829010809/http://www.ulogic.org/trac
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Fig. 2. Example 2-bit counter built out of coarse-grained blocks. The upper
block consists of a preconfigured XOR gate with synchronous and asyn-
chronous outputs. The lower block consists of a preconfigured inverter with
synchronous and asynchronous outputs. Both of these would be preconfigured
primitives that could be instantiated but not modified, and could form part of
a Turing-complete set. This approach is simple and portable but scales very
poorly and does not efficiently use the underlying hardware resources.

But the size of frame address fields vary from one architecture
to another, and there is no universal frame address structure
that can be used across architectures.

Columns in the bitstream correspond to logic columns in
the tile map, and vary in width according to their underlying
tile types. Many columns in the tile map are not separately
addressable in the bitstream and have zero effective width,
as in the case of interconnect tiles. The tile map may show
adjacent columns for interconnect and logic, such as INT +
CLB, INT + DSP, and INT + BRAM, but only the CLB, DSP,
and BRAM columns exist in the bitstream addressing.

Bitstream files consist of a header and a collection of
packets of various sizes. Most packets read from or write to
configuration controller registers, the most important of which
is the frame data register. A packet can write a single frame,
a contiguous set of frames, or the full configuration space of
the device. Multiple packets can be used when discontiguous
sets of frames need to be written, as is often the case during
partial reconfiguration.

All of the bitstream information discussed here is supported
by Torc. Our work adds the ability to configure frame contents
with XDL logic and routing settings.

III. HYPOTHESIS

Definition: A micro-bitstream is a building block of config-
uration data—logic or routing or both—that can be used to
compose a larger function or design.

Hypothesis: A valid bitstream of arbitrary complexity can
be composed by offsetting and logically OR-ing a suitable set
of micro-bitstreams.

This hypothesis was derived from the simple fact that an
empty bitstream consists mostly of logic zero bits, suggesting
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Fig. 3. Example 2-bit counter built out of fine-grained blocks. The blocks are
architectural primitives. Arbitrarily complex LUT masks are composed from
input passthrough functions according to the equations given. The circuit looks
as complicated as the coarse-grained version for this very simple example,
but is far more flexible, scales linearly, and makes efficient use of the high-
speed carry chains. When architectural primitives are used, there is no need
for custom mapping, placing, or routing.

that logic one bits generally turn things on. We tested this non-
rigorously in hardware with a simple design: We removed a
number of settings from one XDL design and inserted them
into another XDL design, and generated bitstreams for both.
Neither bitstream worked correctly by itself, but when we
merged the two bitstreams by logically OR-ing their frame
data, we obtained the original functionality.

IV. APPROACH

Our approach in micro-bitstream assembly was constrained
by our requirement to avoid reverse-engineering of bitstream
information, while still providing a useful capability to the
research community.

This approach encompasses primitive selection, library cre-
ation, bitstream generation, and some accompanying imple-
mentation details.

A. Primitive Selection

Our hypothesis makes it clear that user bitstreams can be
composed of micro-bitstreams which need not correspond to
architectural primitives like PIPs and logic settings—The set
of primitives only needs to be Turing complete. Figure 2 shows
an example of a circuit implemented with coarse-grained
primitives, while Figure 3 shows the same circuit implemented
with fine-grained primitives.

If the set of micro-bitstream primitives does not correspond
to architectural primitives, the design must first be mapped to
the primitive set, and subsequently placed and routed within
the custom architecture that they define. Figure 4 shows the
general bitstream generation case, where the micro-bitstream
primitives are not necessarily architectural primitives. In the
special case of a one-to-one correspondence between micro-
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Fig. 4. General bitstream generation flow. The red path shows the creation of the micro-bitstream library and its subsequent use in bitstream generation for
user designs. The blue path shows the general case in which primitives do not have a one-to-one correspondence with actual device logic and wiring. In the
general case, a custom device database must be created, and a special mapper, placer, and router are required to target the virtual device.

bitstream primitives and architectural primitives, the path
shown with blue arrows becomes unnecessary.

B. Library Creation and Bitstream Generation

Our current implementation uses architectural primitives, so
there is no need for special device databases or special map-
ping, placement, or routing tools. The top of Figure 5 shows
the library creation flow as implemented, and the bottom of
the figure shows the bitstream generation flow. While this
process is considerably simpler than that shown in Figure 4,
there are still legitimate reasons—simplicity and speed of
implementation—why some applications might choose not to
use architectural primitives.

C. Resource Model and Implementation

Our resource model is that of the device itself. This data
includes every routing PIP and every configurable setting
described in the XDLRC data, which we obtain indirectly
through Torc’s device databases.

Much of the design can be blindly mapped from XDL
settings to corresponding micro-bitstreams, as long as the
resource is supported in our library. We would have used
Torc’s device database extensively if we needed to map, place,
or route the design, but under our resource model the bitstream
generation process mainly uses the tile map and its coordinate
system.

D. Torc Changes

We added a few utility functions to Torc’s Virtex5 Bitstream
Frames API in the course of this work. These functions
primarily facilitate looking up configuration frame data by
frame address and by XDL coordinates. Frame addresses are

the natural coordinate system for all bitstream information, but
XDL coordinates are more natural for design information.

The XDL functions can also return the range of bits within
the requested frames that correspond to the desired tile. There
are some assumptions inherent in this process because the
configuration guides do not discuss tile boundaries in frames,
but it is reasonable to work from what is documented: look up
the frame height, remove the middle clock word, and divide
the remaining bits by the number of tiles in the frame.

One additional function helps to map interconnect tiles
to their associated logic tiles. Bitstream frame addressing
does not provide separate addresses for interconnect columns:
Those columns share an address with the primary logic column
that they support. In Virtex4, Virtex5, and Virtex6 architec-
tures, the tile map has interconnect tiles immediately to the
left of their corresponding logic tiles. In 7-Series architectures,
those interconnect columns alternate between the left and right
sides of their logic tiles.

V. LIBRARY CREATION

Micro-bitstream library creation is a multi-step process. We
begin by iterating over our selected primitives and creating
an XDL design for each setting. We then convert these XDL
designs to NCD and use bitgen to generate corresponding bit-
streams. Each bitstream is compared to a reference bitstream,
and commonalities are discarded, so that what remains is the
effect of the XDL primitive. We compress the resulting micro-
bitstreams, and stitch them into the library.

A. Primitive Selection

With our decision to use architectural primitives, we now
consider those primitives more closely. The Virtex5 architec-
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Fig. 5. Simplified bitstream generation flow. Our work currently uses architectural primitives as micro-bitstream primitives, so there is no need for special
device databases or special mapping, placement, or routing tools. The bitstream generation process traverses the user design, looks up micro-bitstreams for
each supported setting in the design, calculates their proper offsets, expands them in place into the device frames, and writes the resulting bitstream file.

ture includes 111 tile types, each of which is instantiated in
one or more devices in the family, and most of which contain
routing PIPs. Within a subset of those tiles types are also 53
logic site types, most of which have configurable resources.

Routing support includes all PIPs in CLB and INT tiles and
over 50 types of clock tiles. Logic support includes SLICEL,
SLICEM, RAMB36_EXP, and most DSP48E sites. Selection
of primitives was influenced by multiple criteria, including
usage in typical designs: Logic sites SLICEL and SLICEM
and routing PIPs in INT tiles are used by every design, so
supporting these sites and tiles was a top priority. Clock,
BRAM, and DSP primitives were similarly selected because
of their prevalence.

B. Examples

When processing logic and routing in XDL designs, we
must accommodate different kinds of settings. Examples and
characteristics of these settings are provided below.

1) Routing PIPs: Nets are bounded by source and sink pins,
and are composed of routing PIPs. Only the routing PIPs affect
the bitstream.
net "blink",

outpin "blink" DQ,
inpin "blink" D6,
pip CLBLL_X16Y59 L_DQ -> SITE_LOGIC_OUTS3,
...;

The highlighted PIP in this example specifies a connection
between wires L_DQ and SITE_LOGIC_OUTS3 in the tile
named CLBLL_X16Y59.

2) Logic Settings: Logic settings are always associated
with logic sites, each of which may contain zero or more
configurable resources. Most resources can take on one of
several possible settings or values. In the example below,
CLKINV is a configurable mux that passes a clock signal either
inverted or uninverted.
inst "blink" "SLICEL", placed CLBLL_X16Y59

SLICE_X27Y59, cfg "
CLKINV::CLK
D6LUT:blink_i:#LUT:O6=~A6

DFF:blink:#FF
DFFMUX::O6
...";

Resources DFF, DFFMUX, and D6LUT are special cases that
we discuss next.

3) LUT Equations: LUT equations are a special case be-
cause their settings do not come from a predefined list. They
are instead expressed as boolean functions of their inputs and
the constants 0 or 1. The inputs are named A1 through An, n
being the degree of the LUT.

Virtex5 slices have four fracturable LUTs—named A, B, C,
and D—that can generate separate functions of 5 and 6 inputs.
The D6LUT example above configures the O6 output of the D
LUT in LUT mode—as opposed to RAM or ROM mode. The
O6=~A6 equation indicates that its output is the complement
of the A6 input.

A 6-input LUT has 64 memory bits and can therefore take
on 264 values. There is no feasible way to generate micro-
bitstreams for each of these settings. But it is possible to gen-
erate micro-bitstreams for functions O6=A1, O6=A2, O6=A3,
O6=A4, O6=A5, O6=A6, O6=1, and O6=0, and to compose the
desired function at runtime by applying the equation in bitwise
fashion to these micro-bitstreams.

4) LUT RAM Masks: LUTs can also be configured in RAM
or ROM modes, in which case a hexadecimal LUT mask takes
the place of a LUT equation. Instead of generating a micro-
bitstream for each of the 64 bits in a LUT, we use the Logic
Allocation (LL) File that bitgen creates when given the ’-l’
(ell) flag. The LL file can be parsed and used to identify the
relative frame address and offset of each bit in the LUT. The
LUT mask can then be applied in bitwise fashion to each of
the configuration bits.

inst "lutram" "SLICEM", placed CLBLL_X16Y59
SLICE_X27Y58, cfg "
A6LUT::#RAM:O6=0xAC52660033A966F1
...";

5) BRAM Initialization: BRAM data uses hexadecimal
initialization strings for both parity and data, in the same



manner as LUT RAM masks. For 16,384 + 8,192 bits of
content and parity, the amount of data is much larger, but the
LL file provides the same location information as for LUT
masks.

C. Dependencies

Certain dependent resources have no effect on the bitstream
unless their associated primary resource is instantiated in the
design. We detect this condition incidentally after iterating
over the possible settings for the resource if none of the result-
ing bitstreams differ from the reference bitstream. DFFMUX is a
good example: This configurable multiplexer drives the input
of flip-flop DFF, but if DFF is not instantiated, then DFFMUX

has no effect upon the bitstream regardless of its setting. To
properly generate micro-bitstreams for resources with depen-
dencies, the reference bitstream must include the dependency.
Some logic resources depend upon other logic resources, while
some depend upon the presence of a net driving or driven by
the resource. To accommodate these situations, resources with
dependencies use a harness as described below.

D. Special Settings

Some resources are configured with complex or arbitrary
strings, while others are configured by complex code. For
example, the Virtex5 device data does not enumerate valid
I/O standards for IOBs, so generation of micro-bitstreams for
those settings is not automated. As another example, the rules
that determine whether IOBs must be configured as VREF
pins are dynamically evaluated by bitgen based upon the entire
design and the I/O standards used in each I/O bank. The first
example is easy to resolve because the list of supported I/O
standards is published, but the second example is difficult to
resolve without reverse-engineering, and is consequently not
supported in this work.

E. Logic Site Harnesses

When we find all of the micro-bitstreams for a given logic
resource to be empty—indicating that each of them is identical
to the reference bitstream—we infer that some dependency
must be present. The observed behavior suggests that resources
are turned off in the bitstream if they do not drive any other
logic or routing resources. There are also a few cases where
bitgen seems to want input drivers.

We address these cases in two ways: Firstly, we create a
harness net that connects to every input and output pin of the
logic site of interest. The fact that such a net is nonsensical
and unroutable is irrelevant. Secondly, we instantiate all of
the primary site resources—all LUTs and flip-flops in the
case of slices—regardless of which ones may be implicated
by the resource of interest. These two steps seem to generate
enough signal path to satisfy the dependencies and prevent the
dependent resources from being discarded during bitstream
generation. This approach allows us to create and reuse a
single harness per site type.

F. Micro-Bitstream Generation

Every logic resource can take one or more settings in
addition to the special #OFF value. Logic settings are already
explicitly grouped by resource in the device architecture data.
Groups of routing resources are simply configurable muxes,
and are easy to infer from the set of PIPs sharing the same
sink wire. The Torc architecture data provides all of this
information, and allows us to iterate through devices, tiles,
logic resources, logic settings, and routing PIPs.

When generating micro-bitstreams for routing PIPs, we
create a sample design, a sample site instance, and a sample
net. The instance only serves to provide endpoints for the
net, and the net contains only the PIP of interest. We iterate
over all the PIPs belonging to the same configurable mux,
and generate XDL files for each one in turn. We then convert
each of the XDL files to NCD with the Xilinx xdl tool, and
convert each NCD file into a bitstream with bitgen. Finally,
we read the reference and generated bitstreams, compare
their corresponding frames, and diff the frames that are not
identical.

When generating micro-bitstreams for a logic resource, we
create a sample design and instantiate a logic site to host
the resource. If the resource requires a harness, we insert it.
We then iterate over every valid setting for the resource and
create a corresponding XDL file. If a harness was used, we
create one additional XDL file as a reference design, with the
harness inserted and the resource set to #OFF. The XDL files
are converted to NCD and then to bitstreams, as with routing
resources, and frame differences are retained.

The resulting micro-bitstreams consist of sparse binary data
that is highly compressible, typically by two or more orders
of magnitude.

G. Library Organization

The compressed micro-bitstream data is stitched together
into a single library for convenience. The internal structure of
the library file is as follows:
Tile Type Count
Tile Type 1

Resource Count
Resource 1

Config Count
Config 1

Micro-Bitstream Data
...

H. Micro-Bitstream Validation

The library was validated by creating test designs, generat-
ing bitstreams for those designs, and comparing the bitstreams
to the corresponding bitgen output with the help of Torc.
Individual XDL designs were created for every supported logic
resource and for a sample of routing PIPs. Complex designs
combining large numbers of these micro-bitstreams were also
generated and tested to validate our core hypothesis.

We note that Torc does not currently calculate and update
frame ECC values, so we ignore the “clock” word at the center
of each frame when comparing bitstreams.



VI. BITSTREAM GENERATION

Our current bitstream generation process was shown in Fig-
ure 5. Since this process essentially merges micro-bitstreams
together, we internally call our tool bitmerge. The input to
bitmerge is a placed and routed XDL design, or subset thereof.
Bitmerge traverses the design and processes the resources one
by one. Micro-bitstreams for each supported design element
are fetched from the primitive library, positioned according to
frame and word offsets, and merged into the base frame set,
which may be empty or may have been read from an existing
bitstream. These steps are detailed below.

A. Design Traversal

Bitmerge uses Torc to traverse the XDL design, first visiting
all instances, and then visiting all nets. For placed instances of
supported site types, the frame and word offsets are calculated
from the site placement location, and every configuration
setting for that instance is processed. For every routed or
partially routed net, the PIPs are traversed and the frame and
word offsets are calculated from each PIP’s tile coordinates.

B. Resource Processing

Processing is simple for most resources: Bitmerge reads the
appropriate configuration settings, looks up each correspond-
ing micro-bitstream in the library, and merges it by OR-ing
the bits into place.

1) Routing PIPs: For routing PIPs, bitmerge looks up the
tile type and fetches the appropriate micro-bitstream using the
source and destination wires as the key. The micro-bitstream
is expanded and merged in place with the base frame set.

2) Logic Settings: For most logic settings, bitmerge looks
up the logic site and resource and fetches the appropriate
micro-bitstream using the setting as the key. The micro-
bitstream is expanded and merged in place.

3) Special Case: LUT Equations: LUTs configured in LUT
mode use a boolean equation as the setting. The output is
assigned a function of the LUT inputs and the constants 0 or
1. The library contains micro-bitstreams for each variable and
each literal: D6LUT::#LUT:O6=A1, D6LUT::#LUT:O6=A2,
D6LUT::#LUT:O6=1, and so on. The desired function is
formed by applying the boolean expression to the appropriate
micro-bitstreams.

To generate the configuration bits for a LUT equation,
bitmerge parses and evaluates the expression. When the code
encounters a variable or literal in the equation, it fetches the
corresponding micro-bitstream from the library, expands its
set of frames, and pushes it onto a stack. When the code
encounters a boolean operation, it pops two frame sets from
the stack, applies the operation in bitwise fashion to the
frames, and pushes the resulting frames back onto the stack.
When the parsing completes, the only set of frames remaining
on the stack is merged with the base frame set.

4) Special Case: Hex Strings: A few resources use fixed
length hex strings as values. The library contains micro-
bitstreams for each individual bit position of applicable re-
sources, so bitmerge fetches these using the bit position as

TABLE I
Bitmerge PERFORMANCE RESULTS.

Design bitmerge (s)
Single Routing PIP Design 2.5
Single Logic Setting Design 2.5
Large Design (100 % full XC5VFX130T, 20,518 logic sites) 216.0

the key. It expands and merges each of these into place. For
example, the hex string 0x38 can be composed by OR-ing the
micro-bitstreams for bits 0x20, 0x10, and 0x08.

C. Frame Address Calculation

Torc can create an empty frame set for any supported device.
Data from full or partial bitstreams can be loaded into those
frames, and bitmerge can modify the frame contents. Each
frame in the set is implicitly mapped to its corresponding
frame address, and every frame includes a modification flag.
Bitmerge consequently does not need to calculate frame ad-
dresses, but instead relies on Torc to return the proper frames
for each requested tile.

D. Bitstream Assembly

As each resource is processed, the appropriate micro-
bitstreams are merged into the base frame set. When all re-
sources have been processed, the resulting frames are wrapped
into bitstream packets and written to a bitstream file.

VII. RESULTS

Bitmerge can be evaluated in terms of device and tile type
coverage, extensibility and portability, runtime performance,
and size.

A. Resource Coverage

Bitmerge supports logic sites of type SLICEL, SLICEM,
DSP, and BRAM. Except for some DSP locations, all re-
sources in these sites are supported, and most of the logic in
real designs can be implemented with these sites. For routing,
bitmerge supports INT, CLBLL/CLBLM, and all clock tiles.
These routing tiles cover the majority of the routing resources
in any device. Without logic support for IOBs and global clock
buffers, bitmerge cannot yet create bitstreams for complete
designs. Many additional logic resources can be supported,
but some others cannot because they would require reverse-
engineering. A simple solution is to configure any unsupported
resources in a base bitstream that is then imported by bitmerge.

B. Extensibility and Portability

Bitmerge currently supports only Virtex5 devices. Extending
support to other architectures will require the creation of
suitable harnesses for every logic site, but the rest of the
process should remain the same.

C. Runtime Performance

We tested runtime performance for a single PIP change, for
a single logic resource change, and for a large design, on a
workstation with a 3 GHz Intel Xeon 5160 and 4 GB of mem-
ory. The large design targets the XC5VFX130T and includes
20, 518 configurable instances with 405, 431 logic settings, and



92, 227 nets with 1, 425, 932 PIPs. The design also utilizes
100 % of the slices in the device. 19 of the 20, 518 configurable
instances in the design are not currently supported—primarily
items like IOBs, DCMs, and clock buffers.

Table I shows the runtime performance of bitmerge. License
agreement terms preclude benchmarking bitmerge against
Xilinx software, but we note that bitmerge compares quite
favorably, particularly when the data originates in XDL form.

D. Library Size
The micro-bitstream library is 738 KB in size. This includes

everything necessary for logic resources in SLICEL, SLICEM,
DSP48E, and RAMB36_EXP sites, and for routing PIPs in
INT, CLBLL/CLBLM, and clock tiles. In the future, we expect
to gzip this data as Torc already does for its device databases.

VIII. CONCLUSION

We have described an open-source bitstream generator for
Torc that requires no reverse-engineering of tools or configu-
ration bitstreams. The motivation originates from two critical
needs of ours: The ability to quickly make a large number of
customizations to existing bitstreams, and the ability to embed
bitstream generation inside the system that it targets.

Making bitstream changes from inside Torc will allow
us to amortize the overhead of program startup, database
initialization, and file I/O. Making bitstream changes from
inside an embedded system will allows us to perform dynamic
tuning, or to change the system autonomously while it is
running. With this capability we can resume past work on
hardware autonomy, leading to systems that are far more
flexible, resilient, and in control of their own operation.

Our current approach creates a library of micro-bitstreams
corresponding to architectural primitives, and combines them
into arbitrarily complex designs by expanding and OR-ing
their frame contents. The input is XDL data, with an optional
base bitstream, and the output is a new or modified bitstream.

While this capability does not support the full set of device
resources, it is sufficient for changes to the vast majority of the
device. Our routing PIP coverage can be extended to nearly
100 %. Our logic resource coverage can be extended up to a
point with the approach described in this paper, but there is
a subset of resources and settings that would require reverse-
engineering. Those resources and settings are excluded from
future work.

Our micro-bitstream library currently supports Xilinx Vir-
tex5 devices, but our approach can be extended to other
Xilinx architectures. In practice, every architecture has its own
peculiarities, especially at the bitstream level—asymmetries
in the number of top and bottom clock regions, or CLB
mirroring in 7-Series devices, for example. Even for regular
parts of other architectures, it will still be necessary to build
site harnesses to enable dependent resources.

Future work will include tighter integration with Torc,
support for additional architectures, and better compression of
our library. We are currently planning tests and an application
that will more thoroughly exercise our bitstream generation
and its integration with Torc.
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